The AS-Cohen-Macaulay property for quantum flag manifolds of minuscule weight

نویسنده

  • Stefan Kolb
چکیده

It is shown that quantum homogeneous coordinate rings of generalised flag manifolds corresponding to minuscule weights, their Schubert varieties, big cells, and determinantal varieties are AS-CohenMacaulay. The main ingredient in the proof is the notion of a quantum graded algebra with a straightening law, introduced by T.H. Lenagan and L. Rigal [J. Algebra 301 (2006), 670-702]. Using Stanley’s Theorem it is moreover shown that quantum generalised flag manifolds of minuscule weight and their big cells are AS-Gorenstein. 2000 MSC: 16E65, 16W35, 20G42

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Multiplicity Conjecture for Non-cohen-macaulay Simplicial Complexes

We prove a reformulation of the multiplicity upper bound conjecture and use that reformulation to prove it for three-dimensional simplicial complexes and homology manifolds with many vertices. We provide necessary conditions for a Cohen-Macaulay complex with many vertices to have a pure minimal free resolution and a characterization of flag complexes whose minimal free resolution is pure.

متن کامل

THE CONCEPT OF (I; J)-COHEN MACAULAY MODULES

‎We introduce a generalization of the notion of‎ depth of an ideal on a module by applying the concept of‎ local cohomology modules with respect to a pair‎ ‎of ideals‎. ‎We also introduce the concept of $(I,J)$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules‎. ‎These kind of modules are different from Cohen--Macaulay modules‎, as an example shows‎. ‎Also an art...

متن کامل

A characterization of shellable and sequentially Cohen-Macaulay

We consider a class of hypergraphs called hypercycles and we show that a hypercycle $C_n^{d,alpha}$ is shellable or sequentially the Cohen--Macaulay if and only if $nin{3,5}$. Also, we characterize Cohen--Macaulay hypercycles. These results are hypergraph versions of results proved for cycles in graphs.

متن کامل

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008